Difference between revisions of "CDI ignition"

From CycleChaos
Jump to navigation Jump to search
(New page: A '''CDI ignition''' or '''Capacitor discharge ignition''' system is a type of automotive electronic ignition system which is widely used in motorcycles, lawn mowers, chain saws, small...)
 
Line 2: Line 2:


A CDI system has a short charging time, a fast voltage rise (between 3 ~ 10 kV/μs) compared to typical inductive systems (300 ~ 500 V/μs) and a short spark duration limited to about 50-80 µs. The fast voltage rise makes CDI systems insensitive to shunt resistance, but the limited spark duration can for some applications be too short to provide reliable ignition. The insensitivity to shunt resistance and the ability to fire multiple sparks can provide improved cold starting ability.
A CDI system has a short charging time, a fast voltage rise (between 3 ~ 10 kV/μs) compared to typical inductive systems (300 ~ 500 V/μs) and a short spark duration limited to about 50-80 µs. The fast voltage rise makes CDI systems insensitive to shunt resistance, but the limited spark duration can for some applications be too short to provide reliable ignition. The insensitivity to shunt resistance and the ability to fire multiple sparks can provide improved cold starting ability.
[[Category:Ignition systems]]
[[Category:Definitions]]
[[Category:Definitions]]

Revision as of 18:49, 12 May 2022

A CDI ignition or Capacitor discharge ignition system is a type of automotive electronic ignition system which is widely used in motorcycles, lawn mowers, chain saws, small engines, turbine powered aircraft, and some cars. It was originally developed to overcome the long charging times associated with high inductance coils used in inductive ignition systems, making the ignition system more suitable for high engine speeds (for small engines, racing engines and rotary piston engines). Capacitor discharge ignition uses capacitor discharge current output to fire the spark plugs.

A CDI system has a short charging time, a fast voltage rise (between 3 ~ 10 kV/μs) compared to typical inductive systems (300 ~ 500 V/μs) and a short spark duration limited to about 50-80 µs. The fast voltage rise makes CDI systems insensitive to shunt resistance, but the limited spark duration can for some applications be too short to provide reliable ignition. The insensitivity to shunt resistance and the ability to fire multiple sparks can provide improved cold starting ability.