Overhead valve

From CycleChaos
Jump to navigation Jump to search
Components of a pushrod valve actuation system
Picture of a V8 engine block (with intake manifold removed), showing the camshaft, pushrods, and rockers.

An overhead valve (OHV) engine, also informally called pushrod engine or I-head engine, is a type of piston engine that places the camshaft within the cylinder block (usually beside and slightly above the crankshaft in a straight engine or directly above the crankshaft in the V of a V engine), and uses pushrods or rods to actuate rocker arms above the cylinder head to actuate the valves. Lifters or tappets are located in the engine block between the camshaft and pushrods.[1] The later overhead camshaft (OHC) design avoids the use of pushrods by putting the camshaft in the cylinder head.

History[edit]

In automotive engineering, an overhead valve internal combustion engine is one in which the intake and exhaust valves and ports are contained within the cylinder head.

The original overhead valve or OHV piston engine was developed by the Scottish-American David Dunbar Buick. It employs pushrod-actuated valves parallel to the pistons, and this is still in use today. This contrasts with previous designs which made use of side valves and sleeve valves.

Arthur Chevrolet was awarded US Patent #1,744,526 for an Overhead Valve Engine design. This patent included an adapter that could be applied to an existing engine, thus transforming it into an Overhead Valve Engine.

Nowadays, automotive use of side-valves has virtually disappeared, and valves are almost all "overhead". However most are now driven more directly by the overhead camshaft system, and these are designated OHC instead - either single overhead camshaft (SOHC) or double overhead camshaft (DOHC).

Advantages[edit]

Overhead valve (OHV) engines have specific advantages:

  • Less complex drive system — OHV engines have a less complex drive system to time the camshaft when compared with OHC engines. Most OHC engines drive the camshaft or camshafts using a timing belt, a chain or multiple chains. These systems require the use of tensioners which add some complexity to the engine. In contrast a OHV engine has the camshaft positioned just above crankshaft and can be run with a much smaller chain or even direct gear connection.

Limitations[edit]

Some specific problems that remain with overhead valve (OHV) engines:

  • Limited engine speeds or RPM — OHV engines have more valvetrain moving parts, thus more valvetrain inertia and mass, as a result they suffer more easily from valve "float", and may exhibit a tendency for the pushrods, if improperly designed, to flex or snap at high engine speeds. Therefore, OHV engine designs cannot revolve ("rev") at engine speeds as high as OHC [2]Modern OHV engines are usually limited to about 6,000 to 8,000 revolutions per minute (rpm) in production cars, and 9,000 rpm to 10,500 rpm in racing applications. In contrast, many modern DOHC engines may have rev limits from 6,000 rpm to 9,000 rpm in road car engines, and in excess of 20,000 rpm.
  • Limited cylinder head design flexibilityoverhead camshaft (OHC) engines benefit substantially from the ability to use multiple valves per cylinder, as well as much greater freedom of component placement, and intake and exhaust port geometry. Most modern OHV engines have two valves per cylinder, while many OHC engines can have three, four or even five valves per cylinder to achieve greater power. Though multi-valve OHV engines exist, their use is somewhat limited due to their complexity and is mostly restricted to low and medium speed diesel engines. In OHV engines, the size and shape of the intake ports as well as the position of the valves are limited by the pushrods.

See also[edit]

References[edit]

External links[edit]