Difference between revisions of "Horsepower"

Jump to navigation Jump to search
8 bytes removed ,  17:17, 6 January 2007
Line 174: Line 174:
== History of the term "horsepower" ==
== History of the term "horsepower" ==


The term "horsepower" was invented by [[James Watt]] to help market his improved [[steam engine]].  He had previously agreed to take royalties of one third of the savings in coal from the older [[Newcomen steam engine]]s[http://www.pballew.net/arithm17.html].  This royalty scheme did not work with customers who did not have existing steam engines but used horses instead.  Watt determined that a horse could turn a mill wheel 144 times in an hour (or 2.4 times a minute).  The wheel was 12 feet in radius, thus in a minute the horse travelled 2.4 × 2π × 12 feet.  Watt judged that the horse could pull with a [[force]] of 180 pounds (just assuming that the measurements of mass were equivalent to measurements of force in pounds-force, which were not well-defined units at the time).  So:
The term "horsepower" was invented by James Watt to help market his improved [[steam engine]].  He had previously agreed to take royalties of one third of the savings in coal from the older Newcomen steam engines[http://www.pballew.net/arithm17.html].  This royalty scheme did not work with customers who did not have existing steam engines but used horses instead.  Watt determined that a horse could turn a mill wheel 144 times in an hour (or 2.4 times a minute).  The wheel was 12 feet in radius, thus in a minute the horse travelled 2.4 × 2π × 12 feet.  Watt judged that the horse could pull with a [[force]] of 180 pounds (just assuming that the measurements of mass were equivalent to measurements of force in pounds-force, which were not well-defined units at the time).  So:
:<math> power = \frac{work}{time} = \frac{force \times distance}{time} = \frac{(180 \mbox{ lbf})(2.4 \times 2 \pi \times 12 \mbox{ ft})}{1\ \mbox{min}}=32,572 \frac{\mbox{ft} \cdot \mbox{lbf}}{\mbox{min}}</math>
:<math> power = \frac{work}{time} = \frac{force \times distance}{time} = \frac{(180 \mbox{ lbf})(2.4 \times 2 \pi \times 12 \mbox{ ft})}{1\ \mbox{min}}=32,572 \frac{\mbox{ft} \cdot \mbox{lbf}}{\mbox{min}}</math>
This was rounded to an even 33,000 ft·lbf/min[http://sections.asme.org/Philadelphia/sept02.htm].
This was rounded to an even 33,000 ft·lbf/min[http://sections.asme.org/Philadelphia/sept02.htm].

Navigation menu